Chi-Square disebut juga dengan Kai Kuadrat. Chi Square adalah salah satu jenis uji komparatif non parametris yang dilakukan pada dua variabel, di mana skala data kedua variabel adalah nominal. (Apabila dari 2 variabel, ada 1 variabel dengan skala nominal maka dilakukan uji chi square dengan merujuk bahwa harus digunakan uji pada derajat yang terendah).
Uji chi-square merupakan uji non parametris yang paling banyak digunakan. Namun perlu diketahui syarat-syarat uji ini adalah: frekuensi responden atau sampel yang digunakan besar, sebab ada beberapa syarat di mana chi square dapat digunakan yaitu:
- Tidak ada cell dengan nilai frekuensi kenyataan atau disebut juga Actual Count (F0) sebesar 0 (Nol).
- Apabila bentuk tabel kontingensi 2 X 2, maka tidak boleh ada 1 cell saja yang memiliki frekuensi harapan atau disebut juga expected count (“Fh”) kurang dari 5.
- Apabila bentuk tabel lebih dari 2 x 2, misak 2 x 3, maka jumlah cell dengan frekuensi harapan yang kurang dari 5 tidak boleh lebih dari 20%.
Apabila tabel kontingensi 2 x 2 seperti di atas, tetapi tidak memenuhi syarat seperti di atas, yaitu ada cell dengan frekuensi harapan kurang dari 5, maka rumus harus diganti dengan rumus “Fisher Exact Test”.
Pada artikel ini, akan fokus pada rumus untuk tabel kontingensi lebih dari 2 x 2, yaitu rumus yang digunakan adalah “Pearson Chi-Square”.
Rumus Tersebut adalah:
Uji kai kuadrat (dilambangkan dengan “χ2” dari huruf Yunani “Chi” dilafalkan “Kai”) digunakan untuk menguji dua kelompok data baik variabel independen maupun dependennya berbentuk kategorik atau dapat juga dikatakan sebagai uji proporsi untuk dua peristiwa atau lebih, sehingga datanya bersifat diskrit. Misalnya ingin mengetahui hubungan antara status gizi ibu (baik atau kurang) dengan kejadian BBLR (ya atau tidak).
Dasar uji kai kuadrat itu sendiri adalah membandingkan perbedaan frekuensi hasil observasi (O) dengan frekuensi yang diharapkan (E). Perbedaan tersebut meyakinkan jika harga dari Kai Kuadrat sama atau lebih besar dari suatu harga yang ditetapkan pada taraf signifikan tertentu (dari tabel χ2).
Uji Kai Kuadrat dapat digunakan untuk menguji :
- Uji χ2 untuk ada tidaknya hubungan antara dua variabel (Independency test).
- Uji χ2 untuk homogenitas antar- sub kelompok (Homogenity test).
- Uji χ2 untuk Bentuk Distribusi (Goodness of Fit)
Keterangan :
O = frekuensi hasil observasi
E = frekuensi yang diharapkan.
Nilai E = (Jumlah sebaris x Jumlah Sekolom) / Jumlah data
df = (b-1) (k-1)
Dalam melakukan uji kai kuadrat, harus memenuhi syarat:
- Sampel dipilih secara acak
- Semua pengamatan dilakukan dengan independen
- Setiap sel paling sedikit berisi frekuensi harapan sebesar 1 (satu). Sel-sel dengdan frekuensi harapan kurang dari 5 tidak melebihi 20% dari total sel
- Besar sampel sebaiknya > 40 (Cochran, 1954)
- Tidak boleh ada sel yang mempunyai nilai harapan lebih kecil dari 1 (satu)
- Tidak lebih dari 20% sel mempunyai nilai harapan lebih kecil dari 5 (lima)
Uji kecocokan modelnya membandingkan observasi dan frekuensi harapan pada kategori untuk diuji tiap kategorinya. Uji Chi Square digunakan untuk menguji hubungan atau pengaruh dua buah variabel nominal dan mengukur kuatnya hubungan antar variabel (C = Coefisien of contingency).
Kriteria data untuk uji chi square :
- Data yang digunakan pada pengujian ini adalah data dari variabel numerik bertingkat maupun yang tidak bertingkat (skala pengukuran ordinal atau nominal). Jika data berupa string, maka dapat dikonversi menjadi numerik. Untuk mengkonversi variabel string menjadi variabel numerik menggunakan automatic recode yang tersedia pada menu transform.
- Data diasumsi sebagai sampel acak.
- Uji non parametrik tidak harus memenuhi asumsi distribusi tertentu.
Karakteristik Chi-Square :
Suatu survey ingin mengetahui apakah ada hubungan Asupan Lauk dengan kejadian Anemia pada penduduk desa X. Kemudian diambil sampel sebanyak 120 orang yang terdiri dari 50 orang asupan lauknya baik dan 70 orang asupan lauknya kurang. Setelah dilakukan pengukuran kadar Hb ternyata dari 50 orang yang asupan lauknya baik, ada 10 orang yang dinyatakan anemia. Sedangkan dari 70 orang yang asupan lauknya kurang ada 20 orang yang anemia. Ujilah apakah ada perbedaan proporsi anemia pada kedua kelompok tersebut.
Jawab :
HIPOTESIS :
Ho : P1 = P2 (Tidak ada perbedaan proporsi anemia pada kedua kelompok tersebut)
Ho : P1 ≠ P2 (Ada perbedaan proporsi anemia pada kedua kelompok tersebut)
PERHITUNGAN :
Untuk membantu dalam perhitungannya kita membuat tabel silangnya seperti ini :
KEPUTUSAN STATISTIK
Bila nilai hitung lebih kecil dari nilai tabel, maka Ho gagal ditolak, sebaliknya bila nilai hitung lebih besar atau sama dengan nilai tabel, maka Ho ditolak.
Dari perhitungan di atas menunjukan bahwa χ2 hitung < χ2 tabel, sehingga Ho gagal ditolak.
- DNilai Chi-Square selalu positif.
- Terdapat beberapa keluarga distribusi Chi-Square, yaitu distribusi Chi-Square dengan DK=1, 2, 3, dst.
- Bentuk Distribusi Chi-Square adalah menjulur positif.
Suatu survey ingin mengetahui apakah ada hubungan Asupan Lauk dengan kejadian Anemia pada penduduk desa X. Kemudian diambil sampel sebanyak 120 orang yang terdiri dari 50 orang asupan lauknya baik dan 70 orang asupan lauknya kurang. Setelah dilakukan pengukuran kadar Hb ternyata dari 50 orang yang asupan lauknya baik, ada 10 orang yang dinyatakan anemia. Sedangkan dari 70 orang yang asupan lauknya kurang ada 20 orang yang anemia. Ujilah apakah ada perbedaan proporsi anemia pada kedua kelompok tersebut.
Jawab :
HIPOTESIS :
Ho : P1 = P2 (Tidak ada perbedaan proporsi anemia pada kedua kelompok tersebut)
Ho : P1 ≠ P2 (Ada perbedaan proporsi anemia pada kedua kelompok tersebut)
PERHITUNGAN :
Untuk membantu dalam perhitungannya kita membuat tabel silangnya seperti ini :
Kemudian tentukan nilai observasi (O) dan nilai ekspektasi (E) :
Selanjutnya masukan dalam rumus :
Perhitungan selesai, sekarang kita menentukan nilai tabel pada taraf
nyata/alfa = 0.05. Sebelumnya kita harus menentukan nilai df-nya. Karena
tabel kita 2x2, maka nilai df = (2-1)*(2-1)=1.
Dari tabeli kai kudrat di atas pada df=1 dan alfa=0.05 diperoleh nilai tabel = 3.841.
KEPUTUSAN STATISTIK
Bila nilai hitung lebih kecil dari nilai tabel, maka Ho gagal ditolak, sebaliknya bila nilai hitung lebih besar atau sama dengan nilai tabel, maka Ho ditolak.
Dari perhitungan di atas menunjukan bahwa χ2 hitung < χ2 tabel, sehingga Ho gagal ditolak.
Terima kasih Semoga Bermanfaat
Tidak ada komentar:
Posting Komentar